
C8 5/5/2011

1

C8 Documentation

Timothy J. Herron

Human Cognitive Neurophysiology Laboratory, David L. Woods, Director
Neurology, Research Service, United States Veterans Affairs
Martinez, California, USA;

1. Overview of C8 2

2. Installation of C8 3

3. Sample Analysis – Colin’s Corpus Callosum 4

4. C8 Output Variables 7

5. Options and Tips 10

6. Limitation of C8 11

7. Files included in the C8 package 12

8. C8 Parameters 13

C8: May 5, 2011 Version

C8 5/5/2011

2

Overview of C8

C8 is a MatLab (www.mathworks.com) package that helps you take
high-resolution (~1mm on a side) T1 human brain images and make many
different measurements on the corpus callosum cross sections along the
brain’s midline. The C8 package takes as input a good-quality white matter
segmentation image that has been reasonably well-normalized to MNI space.
 C8 main quality is that it leverages the great amount of work that has
been previously done in automatically segmenting and normalizing brain
images, and uses it to make measurements in standard (i.e. easy to
communicate) ways that have appeared in the literature. It is also fast
(multiple callosa segmentations are processed per minute) and is easily
modifiable having been written in the popular high-level language MatLab.
For reasonably good quality T1 images for subjects/patients without too
much brain matter missing, C8 can facilitate generating corpus callosum
measurements in a fully automated fashion.

C8 can also be used in a semi-automated fashion for patient
populations who require manual normalization and/or lower quality images
that require manual white matter segmentation.

C8 can operate on standard .nii/.img NIFTI or Analyze image format
files, using the NIFTI MatLab toolbox created by Jimmy Shen (these files
are included).

C8 5/5/2011

3

Installation of C8

First off, you will need to run Matlab version 5.3 or greater. No other packages are
needed.

Installation of C8 itself is fairly simple save for, perhaps, one step.

1) Download the software from www.nitrc.org/projects/c8c8

2) Unzip the package into a new directory, say …./C8, which your unzipper might

do for you. You can add the new directory to your MatLab path for convenience
(type “help addpath” at the MatLab prompt for help).

3) Now you may need to compile one file, Es2.c, if your system is not compatible

with the Windows Es2.dll (or Linux Es2.mexgl or Es2.mexa64) included
executables. (you’ll know this if when you run C8, it complains about a call to
“Es2.xxx” failing).

a. To compile the code, start MatLab and type “mex Es2.c” at the command
line: if you are lucky that will do it, but if not, then type “mex -setup” first
and follow the prompts to try and configure any available C compiler on
your computer. Type “help mex” for further assistance.

b. If none of the above works to get you a working Es2 function, then as a

last resort you can just change the name of the file “Es2.m.slow” to
Es2.m” and then C8 will run, but the 3D permutation tests now run slowly.

4) Then you are ready to run – fire up MatLab and go….

C8 5/5/2011

4

Sample Analysis – Colin’s Corpus Callosum

For the sample analysis, we want to measure the corpus callosum of the
standard, single subject MNI Colin brain (“ColinAtlas”) that we have
included in the package.

Normalizing and Segmenting

First, we need to generate a white matter segmentation for the brain and then
(affine) normalize it to MNI space: this normalized white matter
segmentation will be the input that C8 will operate on.

In this case – see segNormColin.m - we have used the MatLab
package SPM5 to normalize the brain to MNI space, segment the T1 image
into white matter (plus gray and CSF), and then finally map the white matter
segment into MNI space. Although this necessary part of callosum
measurement is not part of the C8 package, I will walk you through it
because the quality of the segmentation determines in large part the quality
of the callosum measurements. Similar advice should apply to using any
other clustering-based segmentation algorithms.

When doing the MNI normalization of the T1 image, it is important
that one only do an affine (linear) normalization only so that measurements
performed in MNI space can easily be back-transformed into equivalent
measurements in original image space. The parameter in SPM5’s function
to specify affine-only is ‘nits’ as follows:

The ‘nits’ parameter in segNormColin.m tells SPM5 how many non-
linear normalization iterations to do – we want 0 (i.e. to turn it off).

Second, the trickier issue of segmentation. The main idea here is to do the
best-quality segmentation that your computer can handle in the time that you
have available. In the case of SPM5, the following 3 flags (between the red

C8 5/5/2011

5

bars) to input to the segmentation routine are the most important to consider
altering from their default values:

sflags.estimate.samp is a flag that tells SPM5 the spacing in mm

of samples to use for its clustering algorithm – the lower this is the better,
however the clustering algorithm uses much more memory as one goes
lower (using less than around 1.5 is very difficult, e.g.).

sflags.estimate.cutoff is a flag that sets the lower frequency
cutoff in mm of the routine that smooths out variations in T1 image
intensity. Lowering this a little bit helps make sure that some T1 intensity
“divots” don’t reduce your regional callosal measurements.

sflags.estimate.cutoff is a flag that controls the amount of
penalty that segmentation incurs for doing more ‘aggressive’ clustering. The
default value is usually OK here, but moving it around a bit can help in
certain cases – e.g. to prevent false minima from occuring.

Third, you will need to normalize the segmentation that you’ve

created into MNI space. It is recommended that you use tri-linear
interpolation in order to preserve the total amount of segmentation partial
volume weight other than that which is altered by the affine registration
matrix (C8 accounts for the affine alterations in CC area/thickness):

‘interp’,1 tells SPM5 to use trilinear interpolation to rewrite the WM
segmentation in MNI space.

Measuring Callosa with C8

C8 5/5/2011

6

For an example of calling the C8 package in order to process the ColinAtlas
white matter segmentation, we look at the file getColin.m:

This first half of the file processes the normalized, WM segmentation that is
in 2x2x2 mm3 voxel format (it’s faster). The program getCC has only one
required input: a cell structure (“aain2”) listing the name of the files to
process. The first cell entry contains the original T1 image file name
(“ColinAtlas256FS.img”), the second one contains the normalized white
matter segmentation (“wc2ColinAtlas256FS.img”), and a third containing
the affine normalization matrix/structure used to normalize the WM image
(“ColinAtlas256FS_sn.mat”). The last file only needs to have a 4x4 affine
transformation matrix in it as variable “M” or “Affine”, but if the file was
generated by SPM, then C8 can interpret it without any alteration.

The 4th and 5th entries in the input cell structure are for optional file
names of coregistered images that C8 can sample callosal values. In this
case, we sample the coregistered T1 image values from the normalized T1
image (“wColinAtlas256FS.img”).

The second call to C8 in the getColin.m file redoes the processing
directly on the original Colin brain image (a 1x1x1 mm3 image) because it
already lies in MNI space to begin with.

The second entry in the getCC command shows how to alter the internal
parameters of C8: by simply including a string that directly changes the
values when executed internally.

C8 5/5/2011

7

C8 Output Variables

In the previous case:

The first output variable has the following substructures:

Thickness1.EqualAngle – Thicknesses around the CC (1=Ant->Pos=50)
measured at 50 points spaced by equal angles from a specified centroid
Thickness1.EqualAngleyMNI – MNI y coordinate of previous points
Thickness1.EqualAnglezMNI – MNI z coordinate of previous points

Thickness1.EqualDist – Thicknesses along 50 points spaced by equal
distances along a median line
Thickness1.EqualDistyMNI – MNI y coordinate of previous points
Thickness1.EqualDistzMNI – MNI z coordinate of previous points

Thickness1.EqualArea – Thicknesses along 50 median points spaced by
equal adjacent areas.
Thickness1.EqualAreayMNI– MNI y coordinate of previous points
Thickness1.EqualAreazMNI– MNI z coordinate of previous points

Each of the above 3D (non MNI coordinate) variables is n x
50 x 3, where n is the number of subjects that were
processed, 50 is the number of thicknesses output per CC,
and there are 3 types of thickness measurements
Thickness1.XXX(:,:,1) are thickness measurements made from
the superior surface, Thickness1.XXX(:,:,2) are thickness
measurements made from the inferior surface, and
Thickness1.XXX(:,:,3) are thickness measurements made from
the medial line through the CC. The medial line
[Thickness1.XXX(:,:,3)] thickness measurements are the most
accurate and robust to variations in image quality and CC
shape/oddities.

Thickness1.Witelson – mean thicknesses within a geometrically-defined 7
partition scheme of Witelson, Brain, 112(3) 1989.
Thickness1.WitelsonMNI – ditto, but for the CC in MNI space, rather
than in original space

Thickness1.Hofer - mean thicknesses within a geometrically-defined 5
partition scheme of Hofer & Frahm, NeuroImage, 32(3) 2006;
Thickness1.HoferMNI - ditto, but for CC in MNI space, rather than in
original space

Thickness1.Chao - mean thicknesses within a geometrically-defined 5
partition scheme of Chao et al, Hum Brain Mapp, 30:3172 2009;
Thickness1.ChaoMNI - ditto, but for CC in MNI space, rather than in
original space

C8 5/5/2011

8

Thickness1.thresh – the threshold value actually used defining CC
clusters

Each of the above 3D variables is n x m x 3, where n is the
number of subjects that were processed, m is the number of
partitions per CC [5 or 7], and there are 3 types of
thickness measurements Thickness1.XXX(:,:,1) are thickness
measurements made from the superior surface,
Thickness1.XXX(:,:,2) are thickness measurements made from
the inferior surface, and Thickness1.XXX(:,:,3) are
thickness measurements made from the medial line through
the CC. The medial line [Thickness1.XXX(:,:,3)] thickness
measurements are the most robust to variations in image
quality and CC shape/oddities.

The second output variable has the following substructures:

Area1.Witelson - – areas within geometrically-defined 7 partition
scheme of Witelson, Brain, 112(3) 1989.
Area1.WitelsonMNI - ditto, but for CC in MNI space, rather than in
original space
Area1.WitelsonBounds – MNI y coordinates defining the vertical
boundaries of the above CC partitions

Area1.Hofer - - area within geometrically-defined 5 partition scheme of
Hofer & Frahm, NeuroImage, 32(3) 2006;
Area1.HoferMNI - ditto, but for CC in MNI space, rather than in
original space
Area1.HoferBounds - MNI y coordinates defining the vertical boundaries
of the above CC partitions

Area1.Chao - areas within geometrically-defined 5 partition scheme of
Chao et al, Hum Brain Mapp, 30:3172 2009;
Area1.ChaoMNI - ditto, but for CC in MNI space, rather than in original
space
Area1.ChaoBounds – MNI y coordinates defining the vertical boundaries
of the above CC partitions

Note that in the above there is always 1 more vertical boundary in the
“Bounds” variables than there are partitions.

Area1.ACC – anterior most MNI coordinate of the CC
Area1.PCC – posterior most MNI coordinate of the CC

The third output variable “clustHg01” is a 5-D variable that shows the
outline and shape of the CC within the (peri)midline cross-section(s) of the
image. It has the following dimensions:
1 – image in y (MNI) dimension
2 – image in z (MNI) dimension

C8 5/5/2011

9

3 – different CC cross-sections computed (from –“sidesl” to +”sidesl” in mm in the x
(MNI) direction)
4 – subject #
5 – value 1’s image contains WM segmentation values for the CC, value 2’s image shows
the connected interior components of the CC (+ values) and the boundaries and non-CC
WM (- values)

The fourth output variable has the following substructures:

 T1s1.EqualAngle – auxiliary image values along the equally angle
spaced points
 T1s1.EqualDist – auxiliary image values along the equal distance
spaced points
 T1s1.EqualArea – auxiliary image values along the equally area
spaced points

 T1s1.Witelson – mean auxiliary image values within the Witelson
partition
 T1s1.WitelsonMed – median auxiliary image values within the Witelson
partition
 T1s1.WitelsonQuart1 – lower quartile auxiliary image values within
the Witelson partition
 T1s1.WitelsonQuart3 – upper quartile auxiliary image values within
the Witelson partition

 T1s1.Hofer – mean auxiliary image values within the Hofer partition
 T1s1.HoferMed – median auxiliary image values within the Hofer
partition
 T1s1.HoferQuart1 – lower quartile auxiliary image values within the
Hofer partition
 T1s1.HoferQuart3 – upper quartile auxiliary image values within the
Hofer partition

 T1s1.Chao – mean auxiliary image values within the Chao partition
 T1s1.ChaoMed – median auxiliary image values within the Chao
partition
 T1s1.ChaoQuart1 – lower quartile auxiliary image values within the
Chao partition
 T1s1.ChaoQuart3 – upper quartile auxiliary image values within the
Chao partition

The fifth output variable (when it exists) has the same structure as the fourth
output variable

C8 5/5/2011

10

 Options and Tips

1) In the case of damaged patient brains where there is still a fairly clear
midline cross-sectional corpus callosum (fragment) to be measured.

a. In this case you may need to move to more sophisticated
normalization procedure if there is substantial brain matter
missing – e.g. you can use manual brain masks (e.g. “VFW”
parameter for SPM5) to tell the routine to ignore those areas
when normalizing brains.

b. It is also possible to do a very simple normalization manually –
simply rotate/translate the brain so that the callosum cross-
section sits on the image midline (x=0), so that the callosum sits
inside a specified box (see parameters “ybox” and “zbox”
inside getCC.m), and so that the callosum cross-section has
the correct orientation inside the box (midbody superior, genu
anterior, splenium posterior).

2) getCC.m is tuned out-of-the-box to operate on normalized

segmentations that are 2x2x2 mm3. You can move the “thresh”
segmentation threshold parameters around a little, probably higher,
when using C8 with smaller sized voxels.

3) In the case that you have images with quality too poor to
automatically segment into white matter, then it is possible to trace
out and fill the callosum cross-section using, e.g., the program
MRIcron. All that matters to getCC.m is that there is a
NIFTI/Analyze format compatible file that has values ranging from 0
to 1 with values indicating what fraction of that voxel is filled with
the callosum part.

4) C8 has various methods for getting rid of the fornix that is sometimes
connected to the callosum. If C8 cannot get rid of it within a certain
subject by modifying thresholds (mainly “thresh” and “downthresh”),
then you can manually detach it using medical image modification
software.

5) C8 is not setup to use diffusion images to detect medial/lateral
directional fibers indicative of the midline callosum. However, such
images can be used as a prefilter to the WM segmentation before
inputting to C8, thereby eliminating the fornix, e.g.

C8 5/5/2011

11

Limitations of C8

- C8’s measurements are limited in accuracy by the
quality of the whole brain WM segmentation that you
do. So it’s best to spend the time and computer
memory needed perform the most accurate
segmentation you can afford.

- C8 cannot always detach the fornix. In these cases the
thickness measurements are generally more accurate
than the area measurements because the former knows
how to ignore most of the fornix.

- Right now C8 cannot detect the posterior or anterior
commissures, and it currently does not even try to find
them.

-

C8 5/5/2011

12

Files included in the C8 package

1) Main function and how to call it:

a. getCC.m getTest.m getColin.m
2) Files from an older version of the NIFTI MatLab toolbox written by

Jimmy Shen: these functions all have “nii” or “rri” in them:
a. bipolar_nii.m examples_nii.txt expand_nii_scan.m

 extra_nii_hdr.m get_nii_frame.m load_nii.m
 load_nii_hdr.m load_nii_img.m make_nii.m
 mat_into_hdr_nii.m rri_file_menu.m
 rri_orient.m rri_orient_ui.m rri_xhair.m
 rri_zoom_menu.m save_nii.m save_nii_hdr.m
 unxform_nii.m view_nii.m view_nii_menu.m
xform_nii.m

3) Functions to pull out data from 2D images:
a. gridInterp.m planeNbd2.m find2Dnbd.m

 extractLines.m
4) Functions to filter images:

a. mgso.m opregset.m polyFiltImg.m
5) Sample preprocessing function:

a. segNormColin.m (getColin.m)
6) Computational functions

a. bloat.m Es2.* quartile.m cluster1D.m
 convexGradDesc.m

7) Documentation
a. 208.17_SfN_2010.pdf C8 Documentation.pdf

8) Subjects/ColinAtlas/ - T1 and WM segmenetation
a. ColinAtlas256FS.img ColinAtlas256FS.hdr

 ColinAtlas256FS.mat ColinAtlas256FS_sn.mat
 c2ColinAtlas256FS.img wColinAtlas256FS.img
 c2ColinAtlas256FS.hdr wColinAtlas256FS.hdr
 wc2ColinAtlas256FS.img nothing.mat
 wc2ColinAtlas256FS.hdr

9) Subjects/TestSlab/ - T1 and WM artificial test case
a. TestSlab256FS.img TestSlab256FS.hdr

 TestSlab256FS.mat c2TestSlab256FS.img
 c2TestSlab256FS.hdr c2TestSlab256FS.mat
 nothing.mat

C8 5/5/2011

13

C8 Parameters

% starting parameters
thisDir=pwd; % directory to operate in
thresh=0.55; % threshold that defines a connected CC component
downthresh=0.4; % get WM segmentation lower threshold that defines clusters of
 % the non-boundary portion of the CC
numclust=1; % number of clusters of the CC to look for (ideally)
 % WM segmentation threshold to look for more CC clusters
minlen=59; % minimum Ant-Pos (MNI y) length of CC so as not to reduce the
 % distance in mm to look for CC away from midline - will compute
sidesl=1; % 2*sidesl+1 CC cross-sections 1 is normal
stand=50; % Number of thickness, etc to output in standard coordinates
ybox=[-52,42]; % coordinates of box that usually contains the CC in MNI space - used
to
zbox=[-8,40]; % extract CC clusters when the CC is in more clusters than expected
MNIrot=0; % should we rotate the CC out of MNI space to make it lie flat?
AuxFilt=1; % should we linearly detrend the auxiliary image values?
pureCoM=0; % use alternative centroids for angle defs - pure centoer of mass
safeCentroid=0; % center of mass x and mean of genu splenium minimum

Parameter description:

thisDir – directory to put temporary files in

thresh – WM segmentation threshold value above which defined connected
components of the CC when C8 is identifying those. Values lower than this
on the outer boundary (ies) of the CC are included within thickness and
variable measurements. This value can be raised or lowered in order to help
automatically detach the fornix from the CC or to have the isthmus connect
the CC into one cluster, e.g.

downthresh – If C8 cannot find CC components of total length high enough
(as specified by “minlen”) with the given “thresh”, then C8 will start to
lower the threshold, continuing until it hits “downthresh”. If that still does
not suffice, then C8 looks at all components within the MNI coordinates
specified by “ybox” and “xbox” for potential CC parts.

numclust – the number of CC clusters that C8 expects to find. If C8 finds
fewer than this number, then the WM threshold is lowered in order to try and
fuse together clusters.

minlen – the minimum length in mm that C8 desires the CC to be (see
“downthresh for more info”)

sidesl – how far out laterally in mm to go to measure the CC cross-section –
to increase robustness, C8 measures CC cross-sections in 1 mm steps from

C8 5/5/2011

14

sidesl to +sidesl (x direction). Default is 1, but 2 works well also for normal
controls.

stand – specifies the number of thicknesses to measure over the whole CC.

ybox, zbox – defines an MNI cross-section box that C8 expects to find the
CC inside (parts of the CC can stick outside the box, however). Strict MNI
normalization is not necessary if the WM segmentation locates the CC in
this area.

MNIrot – 0 means measure the CC in MNI space, whereas =1 means to
rotate the CC back (splenium down, genu up) ~13 degrees in order to have,
on average, the genu and splenium bottoms “standing” on a horizontal plane.

AuxFilt – If using auxiliary files whose CC location you wish to sample,
then setting this to =1 tells C8 to filter all of the linear gradients out of the
image before sampling

safeCentroid - =1 tells C8 to use an alternative centroid for unwrapping the
CC, placing a median line within it, and measuring equally spaced things

